Sustainable Groundwater **Management Act GSP Preparation**

Chowchilla Subbasin

First Technical Meeting

2:00 p.m. to 4:00 p.m., March 7, 2018 **Chowchilla Water District** Chowchilla, CA

Chowchilla Subbasin Progress Meeting March 7, 2018

Project Objectives

- Develop a set of projects and management actions that when fully implemented result in a cost effective sustainable groundwater condition for the Chowchilla subbasin
- Develop a Groundwater Sustainability Plan (GSP) that is approved by
 - California Department of Water Resources (DWR)
 - California State Water Resources Control Board (SWRCB)

Chowchilla Subbasin Progress Meeting March 7, 2018

Groundwater Sustainability Plan

- Requires sustainable groundwater (GW) management over a period of years during which water supply conditions approximate average conditions:
 - 1. No undesirable results in sustainability indicators
 - · GW levels/storage, subsidence
 - Surface water (SW) depletion
 - Impacts on GW-dependent ecosystems (GDEs)
 - · Impacts on GW quality
 - 2. No overdraft
 - . No change in GW storage
 - · Groundwater system inflows equal outflows

Today—Preliminary Estimates

- Overdraft based on a historical basin boundary water budget over a period of years during which water supply conditions approximate average conditions
 - Surface water system
 - Groundwater system
 - Combined
- Projects and management actions
 - Costs
 - Water to increase inflows and/or
 - Decreases in outflows

Chowchilla Subbasin Progress Meeting March 7, 2018

Chowchilla Subbasin Progress Meeting

2

Surface Water Budget-Punchline

- Average Net Recharge from SWS: -93,600 AF/yr (-78,000 to -117,000 AF/yr)
- Orchard crop area increased from about 20,000 acres in 1989 to just over 60,000 acres in 2015
- Corresponding decreases in:
 - Miscellaneous field crop area from about 25,000 acres in 1989 to about 1,000 acres in 2015
 - Pasture and alfalfa crop area from about 35,000 acres in 1989 to about 20,000 acres in 2015
- Corresponding increase in evapotranspiration (ET) from about 30 to 36 inches per year

Chowchilla Subbasin Progress Meeting

What is a Water Budget?

- A complete accounting of all water flowing into and out of a defined area (the Chowchilla Subbasin) over a specified period (1989 through 2014)
- Basic Accounting Principle:
 Inflow Outflow ± Change in Storage = 0
- Just like your checking account:
 Deposits Withdrawals ± Change in Balance = 0

Data Time Period and Time Step

- Data time periods per SGMA
 - Current: Recent one year period (2016)
 - Historical: 1989-2014 (26 years)
 - Projected: minimum of 50 years historical precipitation, evapotranspiration and stream flow
- Time step
 - Minimum of annual required
 - Recommend monthly for water budgets
 - Compile daily data when available to support analysis of projects and management actions

Historical Conditions (1989 -2014)								
	Historical	Average An	nual Volume	Difference (acre-feet)	Percent Difference			
Select Inflows	Record Period	Historical Record	1989-2014					
Buchanan Dam	1912-2017	70,520 AF	63,340 AF	-7,180 AF	-10.2%			
Madera Canal (deliveries and flood)	1978-2016	109,920 AF	103,440 AF	-6,480 AF	-5.9%			
Millerton Reservoir	1922-2014	1,718,700 AF	1,689,380 AF	-29,320 AF	-1.7%			
Precipitation	1929-2016	10.72 in	10.91 in	0.19 in	1.8%			
Chowchilla Subbasin Progress Meeting March 7, 2018								

Evapotranspiration and Precipitation

- CIMIS ET and precipitation Fresno/Madera/Madera II
 - 1989-2015 average ET_o = 55.3 inches
 - 1989-2015 average precipitation = 10.1 inches
- Crop Coefficients Derived from Remotely Sensed SEBAL Analysis in 2009
- Integrated Water Flow Model Demand Calculator (IDC)
- Land Use
 - DWR Land Use Surveys Madera County (1995, 2001, 2011) Merced County (1995, 2002, 2012)

Chowchilla Subbasin Progress Meeting

- Land IQ (DWR) Remotely Sensed Land Use 2014
- County Agriculture Commission Data

					. (1 1)
Land Use		acres)	Average ET, 1989-2014 (inches)		
Alvanavada	1989	2014	ET_c	ET_pr	ET_aw
Almonds	12,268	49,560	41.6	7.1	34.5
Alfalfa	19,428	18,550	38.6	7.2	31.3
Corn	10,447	17,686	35.1	5.1	30.0
Grapes	8,015	10,620	26.7	6.7	20.0
Pistachios	1,944	9,971	37.1	6.6	30.4
Native	21,405	8,749	7.8	7.8	0.0
Urban	2,633	7,141	14.2	6.7	7.5
Idle	19,881	2,253	6.9	6.9	0.0
Mixed Pasture	15,503	451	28.8	7.0	21.8
Misc. Field Crops	22,854	4,527	31.0	6.5	24.4

Net Recharge from SWS

- Net Recharge from SWS = Recharge Extraction
- Recharge:
 - Seepage from Canals (including rivers and sloughs when used as part of the distribution system)
 - Seepage from Rivers and Streams
 - Deep Percolation from Precipitation
 - Deep Percolation from Applied Water
- Extraction
 - Groundwater Extraction (Urban and Agriculture)

Chowchilla Subbasin Progress Meeting

• Groundwater Discharge

March 7, 2018

Surface Water Budget-Punchline

- Average Net Recharge from SWS: -93,600 AF/yr (-78,000 to -117,000 AF/yr)
- Orchard crop area increased from about 20,000 acres in 1989 to just over 60,000 acres in 2015
- Corresponding decreases in:
 - Miscellaneous field crop area from about 25,000 acres in 1989 to about 1,000 acres in 2015
 - Pasture and alfalfa crop area from about 35,000 acres in 1989 to about 20,000 acres in 2015
- Corresponding increase in ET from about 30 to 36 inches per year

Groundwater System Balance

- Unconfined and Confined Groundwater Zones
- Changes in Groundwater Storage
 - Changes in groundwater levels
- Subsurface Groundwater Inflows and Outflows
 - Subsurface flows to/from the Chowchilla Subbasin

Some GW Components Estimated from Surface System Analysis

- Groundwater Extractions
- Groundwater Recharge/Discharge

Chowchilla Subbasin Progress Meeting March 7, 2018

Chowchilla Subbasin Progress Meeting

Calculated Change in GW Storage

Unconfined GW: WY 1989-2014 because of data quality

- Average unconfined groundwater storage change: -91,000 AF/yr
- Estimated range (excluding high value): -52,000 to -86,000 AF/yr

Unconfined Zone Specific Yield Scenario	Calculated Storage Change: 1989-2014 (AF/yr)
C2VSim (variable)	-147,000
CVHM (variable)	-86,000
DWR (8.6%)	-52,000
GMP (13%)	-79,000

- Limited confined groundwater data; however, much smaller
 - Confined = low storativity

Chowchilla Subbasin Progress Meeting
March 7, 2018

GW Storage Change Estimates

- Analysis Period 1989–2014
- Calculated:
 - -52,000 to -86,000 AFY
- Modeled:
 - -32,000 AFY
- Combined:
 - -32,000 to 86,000 AFY

Estimated Subsurface Groundwater Inflows/Outflows

- Analysis Period WY 1989-2014
- High uncertainty for contour-based calculations
 - Variable quality and timing of GW level contours
 - Potential bias from timing of contours
 - Differences in aquifer properties (C2VSim vs. CVHM)
- Average C2VSim simulated subsurface flow = 25,000 to 30,000 AF/yr net inflow

Chowchilla Subbasin Progress Meeting March 7, 2018

Chowchilla Subbasin Progress Meeting March 7, 2018

28

Combined Water Budget

- Inflows Outflows = Change in Storage
- Net Recharge from SWS: -93,600 AF/yr (-78,000 to -117,000 AF/yr)
- Inflows to Groundwater System
 - Infiltration of precipitation: 34,800 AF/yr (26,100 to 43,500 AF/yr)
 - Infiltration of surface water: 38,800 AF/yr (29,100 to 123,000 AF/yr)
 - Infiltration of applied water: 94,600 AF/yr (66,200 to 123,000 AF/yr)
- Outflows from Groundwater System

Historical Overdraft

- Inflows Outflows = Change in Storage (Overdraft)
- Different Overdraft Estimates for WY 1989-2014
 - Estimate from Surface System Water Budget

Net recharge from SWS: -93,600 AF/yr (-78,000 to -117,000 AF/yr)

Subsurface inflow: 27,500 AF/yr (25,000 to 30,000 AF/yr)

Overdraft: -66,100 AF/yr (-49,000 to -83,000 AF/yr)

Estimate from Change in Groundwater Storage
 Overdraft: -59,000 AF/yr (-32,000 to -86,000 AF/yr)

March 7, 2018

Refined Analyses for GSP

- Utilize foundational structure of C2VSim-FG, when released (expected March-April 2018)
- Compare preliminary water balance

 Refine C2VSim-FG considering water balance comparison

DAVIDS CONSULTING ENGINE

 Utilize refined C2VSim-FG for GSP sustainability analyses

Chowchilla Subbasin Progress Meeting

DAVIDS LUNCORPE & SCALMANA CONTROL CON

Chowchilla Subbasin Progress Meeting March 7, 2018

Projects and Management Actions

- Supply augmentation
 - 7 projects identified in existing studies
 - · Additional projects are still being reviewed
- Demand management
 - · Incentives to facilitate trading
 - Cropland idling
- Identify least-cost and combination of projects and management actions
 - Establish financial and economic feasibility

Supply Augmentation Projects

Project Description	Capital Cost (\$M)	\$/AF	Gross TAF/yr	Key uncertainties
Merced-Chowchilla Intertie	\$13	\$300	6	Land acquisition, permitting
ncrease capacity of Buchanan Dam by 50,000 AF	\$45	\$310	10	Project cost

Chowchilla Subbasin Progress Meeting March 7, 2018

Supply Augmentation Projects Being Evaluated

- Recharge basins
- Winter flooding of crop lands
- Madera Canal increase in capacity
- Madera Canal off stream storage
- White area distribution systems
- Improve CWD distribution systems
- Temperance Flat Reservoir

March 7, 2018

SAGBI Recharge Potential SAGBI Index Soil Agricultural Very Poor Poor Marginal Poor Marginal Good Good **Groundwater Banking** Index (SAGBI) Excellent Cropland Share by SAGBI 13.1% ■ Excellent ■ Good ■ Moderately Good 31.5% ■ Moderately Poor 40.4% ■ Poor/Very Poor Chowchilla Subbasin Progress Meeting March 7, 2018

Chowchilla Subbasin Progress Meeting

SAGBI Recharge Acreage

- Groundwater recharge potential varies across GSA's
 - Preliminary evaluation includes cropland only
 - Approximately 18,500 acres classified as "good" or "excellent"
- Uncertainties
 - Existing infrastructure
 - Flood flow magnitude and frequency

GSA	Excellent	Good	Moderately Good	Moderately Poor	Poor	Very Poor
CWD	1,100	11,845	39,745	19,400	1,695	0
Madera Co.	615	3,495	9,235	14,155	7,990	230
Merced Co.	65	1,390	150	0	0	0
Triangle T	0	0	245	4,915	5,550	495
Total	1,780	16,730	49,370	38,470	15,240	725

DRAFT

Subbasin Overview

- Farming generates over \$610 million of gross output per year
- Supports local jobs and businesses
 - 2-6 <u>full time equivalent</u> jobs per million in farm revenue
 - Farming generates
 - Over 25% of output
 - · Over 23% of employment
- High-value production
 - · Permanent crops, dairy

DAVIDS CHARGE TIND ENGINE

Demand Management Options

- Cropland idling program
 - Pay growers per AF of ETAW to temporarily idle land
- Ground and/or surface water markets
 - Develop water trading system and allow growers to buy and sell over short/long term

Chowchilla Subbasin Progress Meeting

- Groundwater extraction fees
 - Levy fee for groundwater extraction to reduce pumping

March 7, 2018

Demand Management Costs \$350 \$320 Preliminary \$300 idling analysis --- Demand Management \$280 \$300 Average cost \$250 \$260/AF \$250 \$220 Does not include admin \$200 costs Does not \$150 include stranded capital \$100 costs Uncertainties \$50 **Crop market** conditions Water 5 10 15 20 25 30 35 40 45 50 conditions **Cumulative Gross Supply (TAF)** 3rd party impacts DAVIDS SULLHOORER & REAL Chowchilla Subbasin Progress Meeting March 7, 2018 40

Delineation of Potential Management Areas

- Physical/Hydrogeology Considerations
 - Hydrogeologic features (e.g., Corcoran Clay extent)
 - Basin conditions (e.g., groundwater level trends, subsidence, SW/GW interaction)
- Jurisdictional Considerations
 - GSA boundaries
- Potential Additional Considerations
 - Water supply source
 - Other

DRAFT

March 7, 2018

Potential Implications of Defining Management Areas for GSP

- Pros
 - Establish management actions and monitoring tailored to unique issues/conditions of specific areas
- Cons
 - Potential to artificially restrict flexibility of groundwater management between management areas
 - Each management area must be described in detail in GSP
- Possibly delineate fewer management areas based on hydrogeology and estimate water budgets for management areas and also GSA areas

DAVIDS CONSULTED CONSULT

Chowchilla Subbasin Progress Meeting March 7, 2018

45

DRAFT

Next Technical Workshop

- June 2018
 - GSA surface water budget results
 - Projects and management actions
 - · Groundwater model selection and refinement
 - Groundwater dependent ecosystems

